skip to main content


Search for: All records

Creators/Authors contains: "Gopinath, Ashwin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Biological membrane channels mediate information exchange between cells and facilitate molecular recognition. While tuning the shape and function of membrane channels for precision molecular sensing via de-novo routes is complex, an even more significant challenge is interfacing membrane channels with electronic devices for signal readout, which results in low efficiency of information transfer - one of the major barriers to the continued development of high-performance bioelectronic devices. To this end, we integrate membrane spanning DNA nanopores with bioprotonic contacts to create programmable, modular, and efficient artificial ion-channel interfaces. Here we show that cholesterol modified DNA nanopores spontaneously and with remarkable affinity span the lipid bilayer formed over the planar bio-protonic electrode surface and mediate proton transport across the bilayer. Using the ability to easily modify DNA nanostructures, we illustrate that this bioprotonic device can be programmed for electronic recognition of biomolecular signals such as presence of Streptavidin and the cardiac biomarker B-type natriuretic peptide, without modifying the biomolecules. We anticipate this robust interface will allow facile electronic measurement and quantification of biomolecules in a multiplexed manner.

     
    more » « less
  2. Over the last decade, DNA origami has matured into one of the most powerful bottom-up nanofabrication techniques. It enables both the fabrication of nanoparticles of arbitrary two-dimensional or three-dimensional shapes, and the spatial organization of any DNA-linked nanomaterial, such as carbon nanotubes, quantum dots, or proteins at ∼5-nm resolution. While widely used within the DNA nanotechnology community, DNA origami has yet to be broadly applied in materials science and device physics, which now rely primarily on top-down nanofabrication. In this article, we first introduce DNA origami as a modular breadboard for nanomaterials and then present a brief survey of recent results demonstrating the unique capabilities created by the combination of DNA origami with existing top-down techniques. Emphasis is given to the open challenges associated with each method, and we suggest potential next steps drawing inspiration from recent work in materials science and device physics. Finally, we discuss some near-term applications made possible by the marriage of DNA origami and top-down nanofabrication. 
    more » « less
  3. DNA origami is a modular platform for the combination of molecular and colloidal components to create optical, electronic, and biological devices. Integration of such nanoscale devices with microfabricated connectors and circuits is challenging: Large numbers of freely diffusing devices must be fixed at desired locations with desired alignment. We present a DNA origami molecule whose energy landscape on lithographic binding sites has a unique maximum. This property enabled device alignment within 3.2° on silica surfaces. Orientation was absolute (all degrees of freedom were specified) and arbitrary (the orientation of every molecule was independently specified). The use of orientation to optimize device performance was shown by aligning fluorescent emission dipoles within microfabricated optical cavities. Large-scale integration was demonstrated with an array of 3456 DNA origami with 12 distinct orientations that indicated the polarization of excitation light.

     
    more » « less